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Scaling with temperature and concentration of the nonlinear rheology of a soft hexagonal phase
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The nonlinear rheology of a soft surfactant hexagonal phase is examined. The system exhibits a shear-
melting transition from a two-dimensional polycrystalline texture to a liquid of cylinders aligned along the flow
[Ramoset al., Langmuir16, 5846 (2000 ]. This dynamic transition is associated with a discontinuity in the
stress-strain curvéflow curve). A detailed study of the temperature and concentration dependence of the flow
curves is presented. The nonlinear rheology is found to display a scaling behavior, when temperature or
concentration are varied. We demonstrate that the whole behavior of the hexagonal phase under shear is
essentially governed by the linear shear modulus of the sa@plaVhen temperature is varied, we show that
the two key parameters, which cont@®}, and in turn, the flow curve, are a transition temperafiy@nd an
activation energye, . We proposeE, to be related to the scission energy of one cylinder into two pieces.
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[. INTRODUCTION particular, we demonstrate that only two quantities, an acti-
vation energyE, and a transition temperatuiie., are suffi-

The behavior of complex fluids under shear has been exsient to capture the temperature dependenc&gfand, in
tensively studied using rheology. Very often, the couplingturn, the main features of the behavior of the system under
between the structure and the flow field induces dynamighear. Both the low shear regime and the high shear regime,
transitions[1,2]. These transitions are either phase transiWhere the long-range 2D order is melted, are governed by
tions, which can also occur at rest, or textural transitionsthe same activation enerdg,, which is proposed to be re-
which solely occur under shear. In both cases, one signatufated to the scission energy, the energetic cost to break a
of such a transition is a discontinuity in the flow curigéress ~ cylinder into two pieces.
vs shear rate plptof the sample. Concerning liquid crystal- ~ The paper is organized as follows. The experimental sys-
line or crystalline samples, extensive experiments have bedgm is described in Sec. Il and the dependence of the flow
devoted to soft three-dimension@D) crystals|3—6] and to ~ curves on temperature and concentration is presented in Sec.
lamellar phasef7—10]. The latter system, a 1D solid and 2D lll. The results are discussed in Sec. IV; the crucial role of
liquid, has turned out to display rich and fascinating behavihe linear shear modulus is evidenced in Sec. IV A, and the
iors under shear. physical meanings of the transition temperature and the ac-

Very few studies exist, however, on the “dual” system, ativation energy are commented in Sec. IV B.
1D liquid and 2D solid, that is, the hexagonal or columnar
phase[11-13. Using melts of block copolymers Morrison Il. EXPERIMENTAL SYSTEM
et al. [11] have provided one of the few examples of shear-
induced morphological transitions on hexagonal phases. At We used lyotropic hexagonal phases of direct ty/pél,
high rates, the authors show the coexistence of two types ofhich consist of infinite oil cylinders, coated with a surfac-
grains of hexagonal phase, but whose nature has not beéant monolayer and arranged on a triangular lattice in an
clearly identified. Using lyotropic hexagonal phases of suraqueous medium. They comprise a mixture of sodium dode-
factant[14], we have been able for the first time to unam-cylsulfate as surfactant, pentanol as cosurfactant, salted wa-
biguously correlate a discontinuity in the flow curve with ater (NaCl), and cyclohexane as oil. By varying concomi-
structural transition in a hexagonal liquid crystalline systemtantly the oil content and the ionic strength of the polar
[15]. The shear-induced transition is a melting of the long-medium, the radiuR of the oil-swollen cylinders can be
range 2D order of the cylinders, resulting in a liquid of infi- varied over 1 decade, from 1.5 nfwithout oil) to 17 nm,
nite cylinders strongly aligned along the flow. The physicalwhile the distancen between the cylinders walls is kept
mechanisms at the origin of the shear melting remain asmall and constanth=2.5 nm)[14]. We define the swell-
present unclear but some understanding may certainly bigg ratiop as the ratio of the volume of oil to the volume of
gained by a detailed investigation of the flow curves. water, p=Vi/Vyaer» Which can be continuously varied

In this paper, we report a careful study of the flow curvesfrom 0 up to 3.8.
of soft hexagonal phases, varying independently two control Two parameters are varied in this work, namely, the tem-
parameters, the temperature and the concentration. The noperature and the concentration of oil cylinders, i.e., the swell-
linear rheology exhibits a scaling behavior as temperature dng ratio. In a first set of experiments, we investigate a swol-
concentration are varied. We show that the shear modulus ¢én phase withp=3.24 (corresponding toR=15 nm) at
the hexagonal phas&,, controls the whole behavior of the different temperatures, ranging from 12°C up to 36°C.
system under shear. The nonlinear rheology of a hexagon&mall-angle x-ray scatteringSAXS) experiments on this
appears, therefore, solely controlled by its linear elasticity. Irsystem[17] have shown that, in the range 14—-40°C, the
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FIG. 2. Flow curves, shear stressas a function of shear ratg
of a swollen hexagonal phase € 3.24). Data sets are labeled by
temperature. For the sake of clarity, all experimental curves are not
represented.

FIG. 1. Flow curve, shear stressas a function of shear ratg,
of a swollen hexagonal phasg= 3.24), showing the different pa-
rameters characterizing the dynamic transitign, Aoy, v, and

veo- The arrows give the direction of the measurements. Tempera- . .
ture is 20 °C. der sheaf15]. The main scattering results can be summa-

rized as follows. At low shear, on the lower branch, the hex-

hexagonal phase is stable and that the lattice parameter do@gonal phase exhibits a polycrystalline structure with the

not vary; moreover, at 12°C, a phase transition from thefylinders preferentially oriented along the velocity direction.

hexagonal phase to a liquid isotropic phase occurs. The grains of the polycrystal are progressively aligned with
In a second set of experiments, we vary the swelling ratidncreasing shear rate. At high shear rate, on the higher

of the hexagonal phase at a fixed temperature of 20 °C, angfanch, the long-range 2D order of the cylinders has melted,
study swollen systems witp ranging from 2.9 up to 3.8, leading to a 2D liquid of cylinders strongly aligned along the

corresponding to radiuR from 13 nm up to 17 nm.

ll. SCALING BEHAVIOR OF THE FLOW CURVES A. Scaling with temperature

Rheology experiments are performed in a Couette geom- 1. Shear-melting transition

etry with a stress-controlled Paar Physica UDS 200 rheom- The flow curves obtained at different temperatures, from
eter. The flow curve, stress vs shear ratey, of a swollen 14°C to 36 °C, are presented in Fig. 2. In the range of tem-
hexagonal phase, obtained imposing eittresr y, has been peratures investigated, all curves are qualitatively similar:
described in detail in Ref15]. In this paper, we focus on the they display two stable branches, separated by plateaulike
curves obtained by imposing the stress. A typical flow curvevariations of the stress, with the presence of a hysteresis.
is shown in Fig. 1. At low shear rates, the system is sheaHowever, the quantitative parameters that characterize the
thinning, while at high rates, the stress varies linearly withflow curves vary strongly. These marked changes mayi-
the shear rate. These two extreme regimes correspond to tvasi seem surprising, since in this range of temperature, the
stable branches of stationary states, thereafter, referred to hgxagonal phase keeps the same structure with a constant
lower and higher branches, respectively. The passage frotattice parameter.
the lower branch to the higher branch occurs through a We start the quantitative analysis by the higher branch. In
marked drop of viscosityBy analogy with Newtonian flu- this regime, the stress varies linearly with the shear rate. For
ids, an effective viscosity; is defined througlor=7y.) The  each temperaturd, one can thus determine the effective
drop of viscosity corresponds to a plateaulike variation of theviscosity » of the melted phase. The valuespfre reported
stress, in ther vs y plot (Fig. 1). A high plateau is obtained in Fig. 3 and show a decrease of the viscosity from 30cP
when increasing the stress and a lower one is obtained upafown to 14 cP wherT increases from 14°C to 22 °GNo
decreasingr. The flow curve defines, therefore, a perfectly data can be obtained above 22°C because the shear rate at
reproducible hysteretic loop. The hysteresis is the signatureshich the higher branch should start is larger than the upper
of a bistable system for which the shear rate is a multivaluedimit of our rheomete). The viscosity decrease can be ac-
function of the shear stress, as has already been observed fayunted for by an Arrhenius formy= noexpEa/kT), with
lamellar phases under shd&18]. We call o, the high pla- an activation energ¥, of 30 KT (inset of Fig. 3.
teau value, and o, the difference between the high and low  Concerning the critical shear rates, we focus hereygn
plateaus, that is, the width of the hystereffidgg. 1). The because the experimental determinationygf is more deli-
critical shear rates for the starts and finishes off the higttate. Data are displayed in Fig. 4 and show a monotonous
plateau are calleg.; andy.,, respectively. increase of the critical shear rajg, with temperature, from
The structure of the hexagonal phase in the two stabl@00 to 1400 s, for T between 14 °C and 22 °C. Quantita-
branches has been previously characterized using SAXS utively, we find thatvy., is proportional to T—T.), with a
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FIG. 3. Temperature dependence of the viscosity in the higher 'xb 40 ]
branch for a sample with=3.24. Inset: same data as in the main 1
plot represented in an Arrhenius plot (jnas a function of 1r). 20 .
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Contrary to the critical shear rate, the stress plategu FIG. 5. Same data as in Fig. 2 plotted in the rescaled (séts
varies in a nonmonotonous way with temperature. As can beext), (a) linear-logarithmic representation ati) linear-linear rep-
seen in the inset of Fig. 4, the stress plateau is maximal fofesentations.

T=20°C; oy increases from 13 to 23.2 Pa, wh&increases

from 14°C to 20°C, and then decreases down to 16 PayhereE,=30KT is the activation energy found in the high
whenT reaches 36 °C. A qualitatively analogous variation isshear rate regime an,=293 K. Note that the temperature
obtained for the width of the hysteresisr,. To gain insight T,=293 K is chosen to allow a direct comparison with the
into the nonmonotonous temperature dependence of thexperiments on samples with different swelling ratios always
stress quantities, andA o, let us normalize, in a first step, performed aff,=293 K. Similarly, one defines

o by the activation term found above in the high shear re-

gime. We, therefore, define a normalized stress as ?rp:crpx[exp(EA/kTo)/exp( EA/kT)], 2)
o=oX[exp(Ex/kTo)/expEp/kT)], (1) Aoy=Ao,X[exp(Ea/kTo)/eXp(Ea/KT)]. €
%0 2000 Surprisingly enough, using sucrlnormaliz~ation, a monoto-
g’;‘ I . nous increase of the two quantities, and A_ap with tem-
i ] peratureT is recoveredFig. 4). Moreover, Fig. 4 shows that
& 60l 1 1500 a,(T) and Ao ,(T) have the same temperature dependence
< i ] as yeo:
o I ] o - ~
£ 40 i | 1000 ’c?_ O'pNAO'pN Yo~ (T=T¢) (4)
3 " ol 1 500 with T,=12°C. 3
~ | ] Consequently, if we define rescaled units as=o
o - ] XTJ(T—-Tg) and y*=yxT./(T—T,) and replot all the
ol 10 curves obtained at different temperatures in tle (/*)
plane, a reasonably good collapse of the data is achieved as
T (°C) shown in Fig. 5 and by the relatively well-defined rescaled

parameters characterizing the transition independently of
FIG. 4. Temperature dependence of, (triangles, Ao,  lemperature: Ye;=1330£290 s*, o} =35+5 Pa, and
(crossep A (squarey and critical shear ratg,, (circles extracted Aa; =13*=1 Pa. Although the master curve obtained with
from the data of Fig. Zsee text for the definition of these quanti- these rescaled units is not perfect, we believe that the scaling
ties). The lines are linear fits of the data points. Inset: raw stresgaptures the essential features for the flow of a hexagonal
plateau values, (solid symbol and normalized values, (empty ~ phase. Moreover, the existence of a universal curve strongly
symbolg as a function of temperature. suggests that only two parameters, namely, the activation en-
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FIG. 6. Normalized stress as a function of shear rate in the
lower branch(low shea). Data sets are labeled by temperature and
are parts of the flow curves of Fig. 2.

ergy E, and the transition temperatufie, are sufficient to
account for the dynamic transition and for the behavior unde
high shear.

2. Low shear rate regime
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FIG. 7. (a) Flow curves aflf =20 °C for samples with different
swelling ratios, p=2.86 (triangles, p=3.24 (squares p=3.51
(crossep and p=3.77 (circles. (b) Same data plotted in the res-

In this section, we focus on the low shear rate regime, thagaled plane ¢** ,o** ) (see text for the definition of the rescaled

is, well below the dynamic transition towards the melted

units).

phase. In this regime, the shear stress varies as a power law

with the shear rater~ 9™ (Fig. 6). For the set of tempera-
tures investigated, the exponemtis almost constant. The

fitting procedures give an exponent between 0.26 and 0.37.

By fitting the data forcing a unique exponent for all tempera-
tures, we determine this exponent tore-0.30. We define
then a prefactoA, such that, in the lower branch, the follow-
ing relationship holds:

o=AX[exp(Ep/kT)/exp(Ex/kTo)]y°3 (5)
or equivalently
o=AX 3 (6)

The dependence of on temperature and shear rate is
given in Fig. 6. The values of the prefactarare extracted
from a fit of the data using E@6), and are reported in Fig. 4.
Again, we find a scaling with—T,), with a transition tem-
perature equal to that previously obtainéld €12 °C).

3. Conclusion

To conclude, we have shown that both the prefagtam

To~ Aoy~ [eXpEA/KT)]X (T—T,). (8)

All quantities present a critical-like variation with tem-
perature, with the same transition temperatlige=12 °C.
Our analysis underlines, therefore, the relevance of two pa-
rameters, the transition temperatdigand the activation en-
ergy En. These two parameters are found to control the dy-
namic transition as well as the shear thinning regime at low
shear rate. This implies, in particular, that the same activation
energy controls the behavior in the low shear rate regime,
where a polycrystalline hexagonal phase flows, and in the
high shear rate regimes where the long-range order has
melted. This result is commented later @ec. V).

B. Scaling with the swelling

We measure the flow curves of hexagonal phases with
different swelling ratiosp. Experiments are performed at a
fixed temperature of 20 °C. The range of swelling ratio ac-
cessible is rather limited because of experimental problems
at low p. In fact, for stiff systemglow p), high shear rates
lead to the formation of bubbles in the sample cell that pre-

the shear thinning behavior at low shear rate and the paranyent the achievement of reliable results. The swelling ratio

eters that characterize the dynamic transition, namely, th

B, therefore, varied between 2.86 and 3.77 and the corre-

critical shear ratey.,, and the normalized stress plateau andsponding flow curves are shown in Figa¥. While the glo-

width of the hysteretic loopy, andAo,, respectively, vary
similarly with temperature:

A~T,~ ATy~ v~ (T—To). 7)

Thus, the following scaling holds for the stress plategu
and the stress width of the hysteresis:

bal shape of the curves is maintained, the quantitative param-
eters display marked variations with An increase ofp of
about 30% induces a decrease of the stress platgaand
critical shear ratey., by almost one order of magnitude,
from 6 Pa to 36 Pa and 180 sto 1560 S!, respectively.

Let us normalize both the stress and the shear rate by the
high stress plateau value of the flow curves. We define thus:
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FIG. 8. Normalized high stress plateau valﬁq,s(full symbolg . . .
and normalized difference between high and low stress plateaus FIG. 9. Stress plateau as a function of the elastic modulus; the

AG i bol funcii ¢ critical sh Th circles correspond to results obtained with samples of different
op (empty symbolsas a func ion of critical snear ratg. € swelling ratiosp at a fixed temperature of 20 °C, while the squares
squares correspond to data obtained at20°C for samples with

. : . . . correspond to results obtained at different temperatures for a sample
different swellingsp while the circles correspond to data obtained P P P

: . with p=3.24. The straight line has a slope of 0.6.
at different temperatures for a sample wjtk 3.24.
higher branch is characterized by a unique viscosity, which
o** zox(ag/%), (99  does not strongly depend on the swelling ratio but rather
varies with temperature following an Arrhenius form. More
important, the collapse of data of Fig. 8 enables a unification
of the two sets of experiments. It underlines that, in both
h 0ic th | for th le with li cases, the same physical parameters control the transition
whereo Is the stress plateau for the sample with & swellinggoy the aligned polycrystaliine phase to the melted phase,
ratio of 3.24 ,=23.2 Pa).(This is the sample whose be- 5nq that these parameters can be varied by changing either
havior with temperature is investigated in the previous secne temperature or the swelling.
tion.) Using these normalized quantities, a reasonably good | this context, we demonstrate below the crucial role
collapse of all the flow curves onto a single master curve iSlayed by the linear elastic modulus of the syst&y, The
obtained[Fig. 7(b)] as shown by the determination of the yariation of the elastic modulug, with the swelling ratio, at
critical parameters characterizing the tralnsmon, indepens fixed temperature of 20°C, has been previously measured
H C A KR > *k __ .
dently of the SV;/e”'ng-ch =815:150 s, 03" =229 [20]. On the other hand, the temperature dependenG o
+0.3 Pa, andho; =9.2+1.1 Pa. Thus, at a given tempera- investigated here, for a sample with a swelling ratio
ture, one parameter is sufficient to account for the whole=3.24[21]. We plot in Fig. 9 the two sets of values of the
behavior, which suggests a universal shape for the flovglastic modulus as a function of the stress plategu A
curves. collapse of all data, measured at different temperatures and
different swelling ratios, is obtained. Thus, Fig. 9 demon-
IV. DISCUSSION strates a strong correlation between the stress plateau and the
. ) shear modulu§ of the hexagonal phase. Quantitatively, we
In this section, we analyze how the parameters charactefi,q that 0'p~(38‘6 over more than one order of magnitude,

izing the shear-melting transition vary and we show that they,, o, 1hough a slight departure from this scaling is observed

depend uniquely on the Sh?‘.ﬂ modulus of the sample. Wg, the data obtained at low temperatufg]. This strongly
then, comment on the transition temperature and on the a

o %’uggests that the key parameter for the control of the flow
tivation energy, the two parameters that have been found turve is, indeed, the elastic modulGs. Thus, the nonlinear

?r?é’;gngythe temperature - dependence of the nonllnearrheology appears uniquely controlled by one linear elastic

modulus of the system.
The scaling found above means that the shear stress nec-
A. Role of the linear shear modulus essary to induce the melting of the phase is smaller when the

In the range of swelling and temperature investigated, alpystem becomes softer. This result can be intuitively under-

the parameters characterizing the shear-melting transitiopt®0d- In Ref[20], we have argued that the elastic modulus
vary in a consistent way. This is shown in the plot(T) G, measured on a macroscopic polycrystalline sample is the
y Y- plotag( microscopic elastic constant of the hexagonal phase, which

and Ao,(T) as a function ofyc, (Fig. 8), which demon-  ¢orresponds to a shear deformation of the triangular lattice
strates that both values obtained at different temperatures avpgg,]_ Consequently, the modul@, does not depend on the
those obtained at different swellings collapse and present @yiure of the sampléi.e., the large scale polycrystalline
linear variation with the critical shear rajg, [19]. Note that  arrangementbut is directly related to the interactions that
the linear variation obrp(T) with ., simply proves that the maintain the 2D long-range order of the cylinders. The

Y** = yX (aplop), (10)
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smallerG,, the weaker the interactions maintaining the 2D 250 . . . . .
crystalline order and, therefore, the lower the stress neces- r

sary to overcome these interactions and thus, melt the sys- 200

tem. However, despite its apparent simplicity, this result is [

not easy to be accounted for quantitatively. It would require ~ 150}

a microscopic model to explain the origin of the shear melt- é

ing, which is at present lacking. Such dependence on the o° 100 [

elasticity of the material seems, nevertheless, general. For ;

3D colloidal crystals, Chen and Zukodl§] found a critical 50 L

stress for shear melting proportional to the shear modulus of .

the material. In the case of lamellar phases, dynamic transi- ol . . . . .
tions have also been found to occur at smaller critical 1015 20 25 30 35 40
stresses and rates when the systems become softer. Some T (°C)

tentative theoretical models exist in this c424,25, which ) _

account for a dependence with the bulk modulus of the FIG. 10. Elastic modulu§, as a function of temperature for a
sample, but they are very specific, aadpriori cannot be sample .With a swelling ratip=3.24. The line is a best fit of the
generalized to other types of dynamic transitions. data points(see text

B. Physical meanings of the transition temperature Based on this assertion, the nonmonotonous variation of
and activation energy the shear modulu&, with temperature can be qualitatively

The analysis of the temperature dependence of the ﬂovvnderstood. Results are reported in Fig. 10 and showGhat

curves has evidenced the key role of the transition tempera:. - Increasing function of temperature at Igvand a de-
ne Key P %reasing function at hight. The elastic modulus is equal to
ture T, and of the activation energi,. Let us comment

briefly these two quantities zero at the transition t_emperature to an isotropic liquid phase,
' T.=12°C and is maximal fol around 20 °C. Although not

theoretically justified, a test function of the fornt £ T)P
X expE/kT) (with E=17.5 kT and p=0.4) satisfactorily

We have shown that all the quantities characterizing thgijts the experimental datéig. 10. It, moreover, provides a
flow curves vary critically with temperature and are equal togualitative interpretation for the nonmonotonous variation of
zero at the transition temperatufe=12°C [Eq. (7)]. As G, with T. On one hand, it indicates that the closeness to the
determined by x-ray scattering, this temperature is preciselysotropic transition dominates at low temperature and is re-
the transition temperature from the liquid crystalline phase taponsible for the critical variation o, with temperature.
an isotropic liquid state. The temperature dependence of th@n the other hand, at high temperature, we propose the value
flow curves proves naturally and expectedly that the shape qff o to be dominated by defects of end-cap type.
the flow curve and the numerical values of the rate- |ndeed, the physics of vortex lattices is relevant to colum-
dependent stresses are intrinsic to the liquid crystalline ordepgr liquid crystals and defects, such as vacancy and intersti-
Additional proof comes to the fact that, beldli, the sys-  tjal lines, exist in both types of systenig7]. As has been
tem presents a Newtonian behavior over a large range afhown for vortex lines, the presence of these defects induces

1. Transition temperature

shear rates and no dynamic transition is observed. a decrease of the shear modulus of the system with a soften-
ing that depends exponentially on the density of defg2d
2. Activation energy In our system, we believe that the density of end caps is

thermally activated with activation enerdy, . As tempera-

ture increases, the number of end caps is, therefore, expected
) S X to increase, which in turn, would lead to a decrease of the
involved. E, controls the shear thinning behavior at low shear modulu§,. This effect would be responsible for the

shear rates, the shear-melting transition, and the Newtoniadpecrease ofG, with T observed at high temperature
behavior at high shear rates. A unique activation energ¥T>zooC) 0

seems, therefore, involved in the flow properties of, at the
same time, a hexagonal phase with a 2D long-range order
and a 2D liquid of cylinders. The enerdy, cannot, there-
fore, be intrinsic to the crystalline order as it will be if re-
lated, for instance, to the density of dislocations. We propose We have investigated the behavior of soft lyotropic hex-
E, to be related to the end-cap energy of the oil-swollenagonal phases under shear. By combining rheology and x-ray
cylinders and to account for the energetic cost of cutting onecattering under shear, we have recently shown that these
cylinder into two pieces. The value &, of 30 kT is a  systems present, above a critical stress and shear rate, a dy-
correct order of magnitudg26], although all previous mea- namic transition, which leads to a melting of the long-range
surements for the scission energy of surfactant cylinderswo-dimensional order of the cylinders. In this paper, we
have been performed on pure surfactant systems and not dvave addressed the variation of the flow curve with two in-
oil-swollen cylinders. dependent control parameters, temperature and swelling ratio

From the analysis of the variation of the flow curves with
temperature, it appears that only one activation enérgys

V. CONCLUSION
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of the hexagonal phase. We have shown that a unified pictuneariation with temperature, with a critical temperature equal
is emerging from the two series of experimental data. Weo the transition temperature towards the liquid isotropic
have proven that the nonlinear rheology and, in particularphase. Despite its valuable information, the detailed investi-
the shear-melting transition are solely controlled by the lin-gation presented in this paper is probably insufficient to un-
ear elasticity of the system. The shear elastic modGly®f  ambiguously determine the physical mechanism for the shear
the hexagonal phase, which can be adjusted by varying eith@nelting. This certainly would require a theoretical approach,
the swelling or the temperature, has indeed appeared as a kigy particular, taking into account the very specific types of
parameter. Moreover, in the particular case where temperaefect of columnar phas¢27,29.

ture is variedG, and the parameters characterizing the flow

curves exhibit a nonmonotonous var.ia.tion with temperature. ACKNOWLEDGMENTS
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